Skip to content

Row

Bases: Mapping[str, Any]

A row is a collection of named values.

Parameters:

Name Type Description Default
data Mapping[str, Any] | None

The data. If None, an empty row is created.

None

Examples:

>>> from safeds.data.tabular.containers import Row
>>> row = Row({"a": 1, "b": 2})
Source code in src/safeds/data/tabular/containers/_row.py
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
class Row(Mapping[str, Any]):
    """
    A row is a collection of named values.

    Parameters
    ----------
    data : Mapping[str, Any] | None
        The data. If None, an empty row is created.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Row
    >>> row = Row({"a": 1, "b": 2})
    """

    # ------------------------------------------------------------------------------------------------------------------
    # Creation
    # ------------------------------------------------------------------------------------------------------------------

    @staticmethod
    def from_dict(data: dict[str, Any]) -> Row:
        """
        Create a row from a dictionary that maps column names to column values.

        Parameters
        ----------
        data : dict[str, Any]
            The data.

        Returns
        -------
        row : Row
            The created row.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Row
        >>> row = Row.from_dict({"a": 1, "b": 2})
        """
        return Row(data)

    @staticmethod
    def _from_pandas_dataframe(data: pd.DataFrame, schema: Schema | None = None) -> Row:
        """
        Create a row from a `pandas.DataFrame`.

        Parameters
        ----------
        data : pd.DataFrame
            The data.
        schema : Schema | None
            The schema. If None, the schema is inferred from the data.

        Returns
        -------
        row : Row
            The created row.

        Raises
        ------
        ValueError
            If the dataframe does not contain exactly one row.

        Examples
        --------
        >>> import pandas as pd
        >>> from safeds.data.tabular.containers import Row
        >>> row = Row._from_pandas_dataframe(pd.DataFrame({"a": [1], "b": [2]}))
        """
        if data.shape[0] != 1:
            raise ValueError("The dataframe has to contain exactly one row.")

        data = data.reset_index(drop=True)

        result = object.__new__(Row)
        result._data = data

        if schema is None:
            # noinspection PyProtectedMember
            result._schema = Schema._from_pandas_dataframe(data)
        else:
            result._schema = schema

        return result

    # ------------------------------------------------------------------------------------------------------------------
    # Dunder methods
    # ------------------------------------------------------------------------------------------------------------------

    def __init__(self, data: Mapping[str, Any] | None = None) -> None:
        """
        Create a row from a mapping of column names to column values.

        Parameters
        ----------
        data : Mapping[str, Any] | None
            The data. If None, an empty row is created.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Row
        >>> row = Row({"a": 1, "b": 2})
        """
        if data is None:
            data = {}

        data = {key: [value] for key, value in data.items()}

        self._data: pd.DataFrame = pd.DataFrame(data)
        # noinspection PyProtectedMember
        self._schema: Schema = Schema._from_pandas_dataframe(self._data)

    def __contains__(self, obj: Any) -> bool:
        """
        Check whether the row contains an object as key.

        Parameters
        ----------
        obj : Any
            The object.

        Returns
        -------
        has_column : bool
            True, if the row contains the object as key, False otherwise.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Row
        >>> row = Row({"a": 1, "b": 2})
        >>> "a" in row
        True

        >>> "c" in row
        False
        """
        return isinstance(obj, str) and self.has_column(obj)

    def __eq__(self, other: object) -> bool:
        """
        Check whether this row is equal to another object.

        Parameters
        ----------
        other : Any
            The other object.

        Returns
        -------
        equal : bool
            True if the other object is an identical row. False if the other object is a different row. NotImplemented
            if the other object is not a row.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Row
        >>> row1 = Row({"a": 1, "b": 2})
        >>> row2 = Row({"a": 1, "b": 2})
        >>> row1 == row2
        True

        >>> row3 = Row({"a": 1, "b": 3})
        >>> row1 == row3
        False
        """
        if not isinstance(other, Row):
            return NotImplemented
        if self is other:
            return True
        return self._schema == other._schema and self._data.equals(other._data)

    def __getitem__(self, column_name: str) -> Any:
        """
        Return the value of a specified column.

        Parameters
        ----------
        column_name : str
            The column name.

        Returns
        -------
        value : Any
            The column value.

        Raises
        ------
        UnknownColumnNameError
            If the row does not contain the specified column.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Row
        >>> row = Row({"a": 1, "b": 2})
        >>> row["a"]
        1
        """
        return self.get_value(column_name)

    def __iter__(self) -> Iterator[Any]:
        """
        Create an iterator for the column names of this row.

        Returns
        -------
        iterator : Iterator[Any]
            The iterator.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Row
        >>> row = Row({"a": 1, "b": 2})
        >>> list(row)
        ['a', 'b']
        """
        return iter(self.column_names)

    def __len__(self) -> int:
        """
        Return the number of columns in this row.

        Returns
        -------
        number_of_columns : int
            The number of columns.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Row
        >>> row = Row({"a": 1, "b": 2})
        >>> len(row)
        2
        """
        return self._data.shape[1]

    def __repr__(self) -> str:
        """
        Return an unambiguous string representation of this row.

        Returns
        -------
        representation : str
            The string representation.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Row
        >>> row = Row({"a": 1})
        >>> repr(row)
        "Row({'a': 1})"
        """
        return f"Row({self!s})"

    def __str__(self) -> str:
        """
        Return a user-friendly string representation of this row.

        Returns
        -------
        representation : str
            The string representation.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Row
        >>> row = Row({"a": 1})
        >>> str(row)
        "{'a': 1}"
        """
        match len(self):
            case 0:
                return "{}"
            case 1:
                return str(self.to_dict())
            case _:
                lines = (f"    {name!r}: {value!r}" for name, value in self.to_dict().items())
                joined = ",\n".join(lines)
                return f"{{\n{joined}\n}}"

    # ------------------------------------------------------------------------------------------------------------------
    # Properties
    # ------------------------------------------------------------------------------------------------------------------

    @property
    def column_names(self) -> list[str]:
        """
        Return a list of all column names in the row.

        Returns
        -------
        column_names : list[str]
            The column names.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Row
        >>> row = Row({"a": 1, "b": 2})
        >>> row.column_names
        ['a', 'b']
        """
        return self._schema.column_names

    @property
    def number_of_column(self) -> int:
        """
        Return the number of columns in this row.

        Returns
        -------
        number_of_column : int
            The number of columns.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Row
        >>> row = Row({"a": 1, "b": 2})
        >>> row.number_of_column
        2
        """
        return self._data.shape[1]

    @property
    def schema(self) -> Schema:
        """
        Return the schema of the row.

        Returns
        -------
        schema : Schema
            The schema.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Row
        >>> row = Row({"a": 1, "b": 2})
        >>> schema = row.schema
        """
        return self._schema

    # ------------------------------------------------------------------------------------------------------------------
    # Getters
    # ------------------------------------------------------------------------------------------------------------------

    def get_value(self, column_name: str) -> Any:
        """
        Return the value of a specified column.

        Parameters
        ----------
        column_name : str
            The column name.

        Returns
        -------
        value : Any
            The column value.

        Raises
        ------
        UnknownColumnNameError
            If the row does not contain the specified column.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Row
        >>> row = Row({"a": 1, "b": 2})
        >>> row.get_value("a")
        1
        """
        if not self.has_column(column_name):
            raise UnknownColumnNameError([column_name])

        return self._data.loc[0, column_name]

    def has_column(self, column_name: str) -> bool:
        """
        Check whether the row contains a given column.

        Parameters
        ----------
        column_name : str
            The column name.

        Returns
        -------
        has_column : bool
            True, if the row contains the column, False otherwise.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Row
        >>> row = Row({"a": 1, "b": 2})
        >>> row.has_column("a")
        True

        >>> row.has_column("c")
        False
        """
        return self._schema.has_column(column_name)

    def get_column_type(self, column_name: str) -> ColumnType:
        """
        Return the type of the specified column.

        Parameters
        ----------
        column_name : str
            The column name.

        Returns
        -------
        type : ColumnType
            The type of the column.

        Raises
        ------
        UnknownColumnNameError
            If the row does not contain the specified column.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Row
        >>> row = Row({"a": 1, "b": 2})
        >>> row.get_column_type("a")
        Integer
        """
        return self._schema.get_column_type(column_name)

    # ------------------------------------------------------------------------------------------------------------------
    # Transformations
    # ------------------------------------------------------------------------------------------------------------------

    def sort_columns(
        self,
        comparator: Callable[[tuple, tuple], int] = lambda col1, col2: (col1[0] > col2[0]) - (col1[0] < col2[0]),
    ) -> Row:
        """
        Sort the columns of a `Row` with the given comparator and return a new `Row`.

        The original row is not modified. The comparator is a function that takes two tuples of (ColumnName,
        Value) `col1` and `col2` and returns an integer:

        * If `col1` should be ordered before `col2`, the function should return a negative number.
        * If `col1` should be ordered after `col2`, the function should return a positive number.
        * If the original order of `col1` and `col2` should be kept, the function should return 0.

        If no comparator is given, the columns will be sorted alphabetically by their name.

        Parameters
        ----------
        comparator : Callable[[tuple, tuple], int]
            The function used to compare two tuples of (ColumnName, Value).

        Returns
        -------
        new_row : Row
            A new row with sorted columns.
        """
        sorted_row_dict = dict(sorted(self.to_dict().items(), key=functools.cmp_to_key(comparator)))
        return Row.from_dict(sorted_row_dict)

    # ------------------------------------------------------------------------------------------------------------------
    # Conversion
    # ------------------------------------------------------------------------------------------------------------------

    def to_dict(self) -> dict[str, Any]:
        """
        Return a dictionary that maps column names to column values.

        Returns
        -------
        data : dict[str, Any]
            Dictionary representation of the row.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Row
        >>> row = Row({"a": 1, "b": 2})
        >>> row.to_dict()
        {'a': 1, 'b': 2}
        """
        return {column_name: self.get_value(column_name) for column_name in self.column_names}

    def to_html(self) -> str:
        """
        Return an HTML representation of the row.

        Returns
        -------
        output : str
            The generated HTML.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Row
        >>> row = Row({"a": 1, "b": 2})
        >>> html = row.to_html()
        """
        return self._data.to_html(max_rows=1, max_cols=self._data.shape[1])

    # ------------------------------------------------------------------------------------------------------------------
    # IPython integration
    # ------------------------------------------------------------------------------------------------------------------

    def _repr_html_(self) -> str:
        """
        Return an HTML representation of the row.

        Returns
        -------
        output : str
            The generated HTML.
        """
        return self._data.to_html(max_rows=1, max_cols=self._data.shape[1], notebook=True)

column_names: list[str] property

Return a list of all column names in the row.

Returns:

Name Type Description
column_names list[str]

The column names.

Examples:

>>> from safeds.data.tabular.containers import Row
>>> row = Row({"a": 1, "b": 2})
>>> row.column_names
['a', 'b']

number_of_column: int property

Return the number of columns in this row.

Returns:

Name Type Description
number_of_column int

The number of columns.

Examples:

>>> from safeds.data.tabular.containers import Row
>>> row = Row({"a": 1, "b": 2})
>>> row.number_of_column
2

schema: Schema property

Return the schema of the row.

Returns:

Name Type Description
schema Schema

The schema.

Examples:

>>> from safeds.data.tabular.containers import Row
>>> row = Row({"a": 1, "b": 2})
>>> schema = row.schema

__contains__(obj)

Check whether the row contains an object as key.

Parameters:

Name Type Description Default
obj Any

The object.

required

Returns:

Name Type Description
has_column bool

True, if the row contains the object as key, False otherwise.

Examples:

>>> from safeds.data.tabular.containers import Row
>>> row = Row({"a": 1, "b": 2})
>>> "a" in row
True
>>> "c" in row
False
Source code in src/safeds/data/tabular/containers/_row.py
def __contains__(self, obj: Any) -> bool:
    """
    Check whether the row contains an object as key.

    Parameters
    ----------
    obj : Any
        The object.

    Returns
    -------
    has_column : bool
        True, if the row contains the object as key, False otherwise.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Row
    >>> row = Row({"a": 1, "b": 2})
    >>> "a" in row
    True

    >>> "c" in row
    False
    """
    return isinstance(obj, str) and self.has_column(obj)

__eq__(other)

Check whether this row is equal to another object.

Parameters:

Name Type Description Default
other Any

The other object.

required

Returns:

Name Type Description
equal bool

True if the other object is an identical row. False if the other object is a different row. NotImplemented if the other object is not a row.

Examples:

>>> from safeds.data.tabular.containers import Row
>>> row1 = Row({"a": 1, "b": 2})
>>> row2 = Row({"a": 1, "b": 2})
>>> row1 == row2
True
>>> row3 = Row({"a": 1, "b": 3})
>>> row1 == row3
False
Source code in src/safeds/data/tabular/containers/_row.py
def __eq__(self, other: object) -> bool:
    """
    Check whether this row is equal to another object.

    Parameters
    ----------
    other : Any
        The other object.

    Returns
    -------
    equal : bool
        True if the other object is an identical row. False if the other object is a different row. NotImplemented
        if the other object is not a row.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Row
    >>> row1 = Row({"a": 1, "b": 2})
    >>> row2 = Row({"a": 1, "b": 2})
    >>> row1 == row2
    True

    >>> row3 = Row({"a": 1, "b": 3})
    >>> row1 == row3
    False
    """
    if not isinstance(other, Row):
        return NotImplemented
    if self is other:
        return True
    return self._schema == other._schema and self._data.equals(other._data)

__getitem__(column_name)

Return the value of a specified column.

Parameters:

Name Type Description Default
column_name str

The column name.

required

Returns:

Name Type Description
value Any

The column value.

Raises:

Type Description
UnknownColumnNameError

If the row does not contain the specified column.

Examples:

>>> from safeds.data.tabular.containers import Row
>>> row = Row({"a": 1, "b": 2})
>>> row["a"]
1
Source code in src/safeds/data/tabular/containers/_row.py
def __getitem__(self, column_name: str) -> Any:
    """
    Return the value of a specified column.

    Parameters
    ----------
    column_name : str
        The column name.

    Returns
    -------
    value : Any
        The column value.

    Raises
    ------
    UnknownColumnNameError
        If the row does not contain the specified column.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Row
    >>> row = Row({"a": 1, "b": 2})
    >>> row["a"]
    1
    """
    return self.get_value(column_name)

__init__(data=None)

Create a row from a mapping of column names to column values.

Parameters:

Name Type Description Default
data Mapping[str, Any] | None

The data. If None, an empty row is created.

None

Examples:

>>> from safeds.data.tabular.containers import Row
>>> row = Row({"a": 1, "b": 2})
Source code in src/safeds/data/tabular/containers/_row.py
def __init__(self, data: Mapping[str, Any] | None = None) -> None:
    """
    Create a row from a mapping of column names to column values.

    Parameters
    ----------
    data : Mapping[str, Any] | None
        The data. If None, an empty row is created.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Row
    >>> row = Row({"a": 1, "b": 2})
    """
    if data is None:
        data = {}

    data = {key: [value] for key, value in data.items()}

    self._data: pd.DataFrame = pd.DataFrame(data)
    # noinspection PyProtectedMember
    self._schema: Schema = Schema._from_pandas_dataframe(self._data)

__iter__()

Create an iterator for the column names of this row.

Returns:

Name Type Description
iterator Iterator[Any]

The iterator.

Examples:

>>> from safeds.data.tabular.containers import Row
>>> row = Row({"a": 1, "b": 2})
>>> list(row)
['a', 'b']
Source code in src/safeds/data/tabular/containers/_row.py
def __iter__(self) -> Iterator[Any]:
    """
    Create an iterator for the column names of this row.

    Returns
    -------
    iterator : Iterator[Any]
        The iterator.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Row
    >>> row = Row({"a": 1, "b": 2})
    >>> list(row)
    ['a', 'b']
    """
    return iter(self.column_names)

__len__()

Return the number of columns in this row.

Returns:

Name Type Description
number_of_columns int

The number of columns.

Examples:

>>> from safeds.data.tabular.containers import Row
>>> row = Row({"a": 1, "b": 2})
>>> len(row)
2
Source code in src/safeds/data/tabular/containers/_row.py
def __len__(self) -> int:
    """
    Return the number of columns in this row.

    Returns
    -------
    number_of_columns : int
        The number of columns.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Row
    >>> row = Row({"a": 1, "b": 2})
    >>> len(row)
    2
    """
    return self._data.shape[1]

__repr__()

Return an unambiguous string representation of this row.

Returns:

Name Type Description
representation str

The string representation.

Examples:

>>> from safeds.data.tabular.containers import Row
>>> row = Row({"a": 1})
>>> repr(row)
"Row({'a': 1})"
Source code in src/safeds/data/tabular/containers/_row.py
def __repr__(self) -> str:
    """
    Return an unambiguous string representation of this row.

    Returns
    -------
    representation : str
        The string representation.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Row
    >>> row = Row({"a": 1})
    >>> repr(row)
    "Row({'a': 1})"
    """
    return f"Row({self!s})"

__str__()

Return a user-friendly string representation of this row.

Returns:

Name Type Description
representation str

The string representation.

Examples:

>>> from safeds.data.tabular.containers import Row
>>> row = Row({"a": 1})
>>> str(row)
"{'a': 1}"
Source code in src/safeds/data/tabular/containers/_row.py
def __str__(self) -> str:
    """
    Return a user-friendly string representation of this row.

    Returns
    -------
    representation : str
        The string representation.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Row
    >>> row = Row({"a": 1})
    >>> str(row)
    "{'a': 1}"
    """
    match len(self):
        case 0:
            return "{}"
        case 1:
            return str(self.to_dict())
        case _:
            lines = (f"    {name!r}: {value!r}" for name, value in self.to_dict().items())
            joined = ",\n".join(lines)
            return f"{{\n{joined}\n}}"

from_dict(data) staticmethod

Create a row from a dictionary that maps column names to column values.

Parameters:

Name Type Description Default
data dict[str, Any]

The data.

required

Returns:

Name Type Description
row Row

The created row.

Examples:

>>> from safeds.data.tabular.containers import Row
>>> row = Row.from_dict({"a": 1, "b": 2})
Source code in src/safeds/data/tabular/containers/_row.py
@staticmethod
def from_dict(data: dict[str, Any]) -> Row:
    """
    Create a row from a dictionary that maps column names to column values.

    Parameters
    ----------
    data : dict[str, Any]
        The data.

    Returns
    -------
    row : Row
        The created row.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Row
    >>> row = Row.from_dict({"a": 1, "b": 2})
    """
    return Row(data)

get_column_type(column_name)

Return the type of the specified column.

Parameters:

Name Type Description Default
column_name str

The column name.

required

Returns:

Name Type Description
type ColumnType

The type of the column.

Raises:

Type Description
UnknownColumnNameError

If the row does not contain the specified column.

Examples:

>>> from safeds.data.tabular.containers import Row
>>> row = Row({"a": 1, "b": 2})
>>> row.get_column_type("a")
Integer
Source code in src/safeds/data/tabular/containers/_row.py
def get_column_type(self, column_name: str) -> ColumnType:
    """
    Return the type of the specified column.

    Parameters
    ----------
    column_name : str
        The column name.

    Returns
    -------
    type : ColumnType
        The type of the column.

    Raises
    ------
    UnknownColumnNameError
        If the row does not contain the specified column.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Row
    >>> row = Row({"a": 1, "b": 2})
    >>> row.get_column_type("a")
    Integer
    """
    return self._schema.get_column_type(column_name)

get_value(column_name)

Return the value of a specified column.

Parameters:

Name Type Description Default
column_name str

The column name.

required

Returns:

Name Type Description
value Any

The column value.

Raises:

Type Description
UnknownColumnNameError

If the row does not contain the specified column.

Examples:

>>> from safeds.data.tabular.containers import Row
>>> row = Row({"a": 1, "b": 2})
>>> row.get_value("a")
1
Source code in src/safeds/data/tabular/containers/_row.py
def get_value(self, column_name: str) -> Any:
    """
    Return the value of a specified column.

    Parameters
    ----------
    column_name : str
        The column name.

    Returns
    -------
    value : Any
        The column value.

    Raises
    ------
    UnknownColumnNameError
        If the row does not contain the specified column.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Row
    >>> row = Row({"a": 1, "b": 2})
    >>> row.get_value("a")
    1
    """
    if not self.has_column(column_name):
        raise UnknownColumnNameError([column_name])

    return self._data.loc[0, column_name]

has_column(column_name)

Check whether the row contains a given column.

Parameters:

Name Type Description Default
column_name str

The column name.

required

Returns:

Name Type Description
has_column bool

True, if the row contains the column, False otherwise.

Examples:

>>> from safeds.data.tabular.containers import Row
>>> row = Row({"a": 1, "b": 2})
>>> row.has_column("a")
True
>>> row.has_column("c")
False
Source code in src/safeds/data/tabular/containers/_row.py
def has_column(self, column_name: str) -> bool:
    """
    Check whether the row contains a given column.

    Parameters
    ----------
    column_name : str
        The column name.

    Returns
    -------
    has_column : bool
        True, if the row contains the column, False otherwise.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Row
    >>> row = Row({"a": 1, "b": 2})
    >>> row.has_column("a")
    True

    >>> row.has_column("c")
    False
    """
    return self._schema.has_column(column_name)

sort_columns(comparator=lambda , : col1[0] > col2[0] - col1[0] < col2[0])

Sort the columns of a Row with the given comparator and return a new Row.

The original row is not modified. The comparator is a function that takes two tuples of (ColumnName, Value) col1 and col2 and returns an integer:

  • If col1 should be ordered before col2, the function should return a negative number.
  • If col1 should be ordered after col2, the function should return a positive number.
  • If the original order of col1 and col2 should be kept, the function should return 0.

If no comparator is given, the columns will be sorted alphabetically by their name.

Parameters:

Name Type Description Default
comparator Callable[[tuple, tuple], int]

The function used to compare two tuples of (ColumnName, Value).

lambda , : col1[0] > col2[0] - col1[0] < col2[0]

Returns:

Name Type Description
new_row Row

A new row with sorted columns.

Source code in src/safeds/data/tabular/containers/_row.py
def sort_columns(
    self,
    comparator: Callable[[tuple, tuple], int] = lambda col1, col2: (col1[0] > col2[0]) - (col1[0] < col2[0]),
) -> Row:
    """
    Sort the columns of a `Row` with the given comparator and return a new `Row`.

    The original row is not modified. The comparator is a function that takes two tuples of (ColumnName,
    Value) `col1` and `col2` and returns an integer:

    * If `col1` should be ordered before `col2`, the function should return a negative number.
    * If `col1` should be ordered after `col2`, the function should return a positive number.
    * If the original order of `col1` and `col2` should be kept, the function should return 0.

    If no comparator is given, the columns will be sorted alphabetically by their name.

    Parameters
    ----------
    comparator : Callable[[tuple, tuple], int]
        The function used to compare two tuples of (ColumnName, Value).

    Returns
    -------
    new_row : Row
        A new row with sorted columns.
    """
    sorted_row_dict = dict(sorted(self.to_dict().items(), key=functools.cmp_to_key(comparator)))
    return Row.from_dict(sorted_row_dict)

to_dict()

Return a dictionary that maps column names to column values.

Returns:

Name Type Description
data dict[str, Any]

Dictionary representation of the row.

Examples:

>>> from safeds.data.tabular.containers import Row
>>> row = Row({"a": 1, "b": 2})
>>> row.to_dict()
{'a': 1, 'b': 2}
Source code in src/safeds/data/tabular/containers/_row.py
def to_dict(self) -> dict[str, Any]:
    """
    Return a dictionary that maps column names to column values.

    Returns
    -------
    data : dict[str, Any]
        Dictionary representation of the row.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Row
    >>> row = Row({"a": 1, "b": 2})
    >>> row.to_dict()
    {'a': 1, 'b': 2}
    """
    return {column_name: self.get_value(column_name) for column_name in self.column_names}

to_html()

Return an HTML representation of the row.

Returns:

Name Type Description
output str

The generated HTML.

Examples:

>>> from safeds.data.tabular.containers import Row
>>> row = Row({"a": 1, "b": 2})
>>> html = row.to_html()
Source code in src/safeds/data/tabular/containers/_row.py
def to_html(self) -> str:
    """
    Return an HTML representation of the row.

    Returns
    -------
    output : str
        The generated HTML.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Row
    >>> row = Row({"a": 1, "b": 2})
    >>> html = row.to_html()
    """
    return self._data.to_html(max_rows=1, max_cols=self._data.shape[1])