Discretizer
Bases: TableTransformer
The Discretizer bins continuous data into intervals.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
number_of_bins |
float
|
The number of bins to be created. |
5
|
Raises:
Type | Description |
---|---|
OutOfBoundsError
|
If the given number_of_bins is less than 2. |
Source code in src/safeds/data/tabular/transformation/_discretizer.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
|
__init__(number_of_bins=5)
¶
Source code in src/safeds/data/tabular/transformation/_discretizer.py
fit(table, column_names)
¶
Learn a transformation for a set of columns in a table.
This transformer is not modified.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
table |
Table
|
The table used to fit the transformer. |
required |
column_names |
list[str] | None
|
The list of columns from the table used to fit the transformer. If |
required |
Returns:
Name | Type | Description |
---|---|---|
fitted_transformer |
TableTransformer
|
The fitted transformer. |
Raises:
Type | Description |
---|---|
ValueError
|
If the table is empty. |
NonNumericColumnError
|
If one of the columns, that should be fitted is non-numeric. |
UnknownColumnNameError
|
If one of the columns, that should be fitted is not in the table. |
Source code in src/safeds/data/tabular/transformation/_discretizer.py
get_names_of_added_columns()
¶
Get the names of all new columns that have been added by the Discretizer.
Returns:
Name | Type | Description |
---|---|---|
added_columns |
list[str]
|
A list of names of the added columns, ordered as they will appear in the table. |
Raises:
Type | Description |
---|---|
TransformerNotFittedError
|
If the transformer has not been fitted yet. |
Source code in src/safeds/data/tabular/transformation/_discretizer.py
get_names_of_changed_columns()
¶
Get the names of all columns that may have been changed by the Discretizer.
Returns:
Name | Type | Description |
---|---|---|
changed_columns |
list[str]
|
The list of (potentially) changed column names, as passed to fit. |
Raises:
Type | Description |
---|---|
TransformerNotFittedError
|
If the transformer has not been fitted yet. |
Source code in src/safeds/data/tabular/transformation/_discretizer.py
get_names_of_removed_columns()
¶
Get the names of all columns that have been removed by the Discretizer.
Returns:
Name | Type | Description |
---|---|---|
removed_columns |
list[str]
|
A list of names of the removed columns, ordered as they appear in the table the Discretizer was fitted on. |
Raises:
Type | Description |
---|---|
TransformerNotFittedError
|
If the transformer has not been fitted yet. |
Source code in src/safeds/data/tabular/transformation/_discretizer.py
is_fitted()
¶
Check if the transformer is fitted.
Returns:
Name | Type | Description |
---|---|---|
is_fitted |
bool
|
Whether the transformer is fitted. |
transform(table)
¶
Apply the learned transformation to a table.
The table is not modified.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
table |
Table
|
The table to which the learned transformation is applied. |
required |
Returns:
Name | Type | Description |
---|---|---|
transformed_table |
Table
|
The transformed table. |
Raises:
Type | Description |
---|---|
TransformerNotFittedError
|
If the transformer has not been fitted yet. |
ValueError
|
If the table is empty. |
UnknownColumnNameError
|
If one of the columns, that should be transformed is not in the table. |
NonNumericColumnError
|
If one of the columns, that should be fitted is non-numeric. |