Classifier
Bases: ABC
Abstract base class for all classifiers.
Source code in src/safeds/ml/classical/classification/_classifier.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
|
accuracy(validation_or_test_set)
¶
Compute the accuracy of the classifier on the given data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
validation_or_test_set |
TaggedTable
|
The validation or test set. |
required |
Returns:
Name | Type | Description |
---|---|---|
accuracy |
float
|
The calculated accuracy score, i.e. the percentage of equal data. |
Raises:
Type | Description |
---|---|
UntaggedTableError
|
If the table is untagged. |
Source code in src/safeds/ml/classical/classification/_classifier.py
f1_score(validation_or_test_set, positive_class)
¶
Compute the classifier's \(F_1\)-score on the given data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
validation_or_test_set |
TaggedTable
|
The validation or test set. |
required |
positive_class |
Any
|
The class to be considered positive. All other classes are considered negative. |
required |
Returns:
Name | Type | Description |
---|---|---|
f1_score |
float
|
The calculated \(F_1\)-score, i.e. the harmonic mean between precision and recall. Return 1 if there are no positive expectations and predictions. |
Source code in src/safeds/ml/classical/classification/_classifier.py
fit(training_set)
abstractmethod
¶
Create a copy of this classifier and fit it with the given training data.
This classifier is not modified.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
training_set |
TaggedTable
|
The training data containing the feature and target vectors. |
required |
Returns:
Name | Type | Description |
---|---|---|
fitted_classifier |
Classifier
|
The fitted classifier. |
Raises:
Type | Description |
---|---|
LearningError
|
If the training data contains invalid values or if the training failed. |
Source code in src/safeds/ml/classical/classification/_classifier.py
is_fitted()
abstractmethod
¶
Check if the classifier is fitted.
Returns:
Name | Type | Description |
---|---|---|
is_fitted |
bool
|
Whether the classifier is fitted. |
precision(validation_or_test_set, positive_class)
¶
Compute the classifier's precision on the given data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
validation_or_test_set |
TaggedTable
|
The validation or test set. |
required |
positive_class |
Any
|
The class to be considered positive. All other classes are considered negative. |
required |
Returns:
Name | Type | Description |
---|---|---|
precision |
float
|
The calculated precision score, i.e. the ratio of correctly predicted positives to all predicted positives. Return 1 if no positive predictions are made. |
Source code in src/safeds/ml/classical/classification/_classifier.py
predict(dataset)
abstractmethod
¶
Predict a target vector using a dataset containing feature vectors. The model has to be trained first.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
Table
|
The dataset containing the feature vectors. |
required |
Returns:
Name | Type | Description |
---|---|---|
table |
TaggedTable
|
A dataset containing the given feature vectors and the predicted target vector. |
Raises:
Type | Description |
---|---|
ModelNotFittedError
|
If the model has not been fitted yet. |
DatasetContainsTargetError
|
If the dataset contains the target column already. |
DatasetMissesFeaturesError
|
If the dataset misses feature columns. |
PredictionError
|
If predicting with the given dataset failed. |
Source code in src/safeds/ml/classical/classification/_classifier.py
recall(validation_or_test_set, positive_class)
¶
Compute the classifier's recall on the given data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
validation_or_test_set |
TaggedTable
|
The validation or test set. |
required |
positive_class |
Any
|
The class to be considered positive. All other classes are considered negative. |
required |
Returns:
Name | Type | Description |
---|---|---|
recall |
float
|
The calculated recall score, i.e. the ratio of correctly predicted positives to all expected positives. Return 1 if there are no positive expectations. |