Skip to content

Column

Bases: Sequence[T_co]

A named, one-dimensional collection of homogeneous values.

Parameters:

Name Type Description Default
name str

The name of the column.

required
data Sequence[T_co] | None

The data of the column. If None, an empty column is created.

None

Examples:

>>> from safeds.data.tabular.containers import Column
>>> Column("test", [1, 2, 3])
+------+
| test |
|  --- |
|  i64 |
+======+
|    1 |
|    2 |
|    3 |
+------+
Source code in src/safeds/data/tabular/containers/_column.py
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
class Column(Sequence[T_co]):
    """
    A named, one-dimensional collection of homogeneous values.

    Parameters
    ----------
    name:
        The name of the column.
    data:
        The data of the column. If None, an empty column is created.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> Column("test", [1, 2, 3])
    +------+
    | test |
    |  --- |
    |  i64 |
    +======+
    |    1 |
    |    2 |
    |    3 |
    +------+
    """

    # ------------------------------------------------------------------------------------------------------------------
    # Import
    # ------------------------------------------------------------------------------------------------------------------

    @staticmethod
    def _from_polars_series(data: Series) -> Column:
        result = object.__new__(Column)
        result._series = data
        return result

    # ------------------------------------------------------------------------------------------------------------------
    # Dunder methods
    # ------------------------------------------------------------------------------------------------------------------

    def __init__(self, name: str, data: Sequence[T_co] | None = None) -> None:
        import polars as pl

        if data is None:
            data = []

        self._series: pl.Series = pl.Series(name, data, strict=False)

    def __contains__(self, item: Any) -> bool:
        return self._series.__contains__(item)

    def __eq__(self, other: object) -> bool:
        if not isinstance(other, Column):
            return NotImplemented
        if self is other:
            return True
        return self.name == other.name and self._series.equals(other._series)

    @overload
    def __getitem__(self, index: int) -> T_co: ...

    @overload
    def __getitem__(self, index: slice) -> Column[T_co]: ...

    def __getitem__(self, index: int | slice) -> T_co | Column[T_co]:
        if isinstance(index, int):
            return self.get_value(index)
        else:
            start = index.start or 0
            stop = index.stop or self.row_count
            step = index.step or 1

            if start < 0 or stop < 0 or step < 0:
                raise IndexError("Negative values for start/stop/step of slices are not supported.")
            return self._from_polars_series(self._series.__getitem__(index))

    def __hash__(self) -> int:
        return _structural_hash(
            self.name,
            self.type.__repr__(),
            self.row_count,
        )

    def __iter__(self) -> Iterator[T_co]:
        return self._series.__iter__()

    def __len__(self) -> int:
        return self.row_count

    def __repr__(self) -> str:
        return self.to_table().__repr__()

    def __sizeof__(self) -> int:
        return self._series.estimated_size()

    def __str__(self) -> str:
        return self.to_table().__str__()

    # ------------------------------------------------------------------------------------------------------------------
    # Properties
    # ------------------------------------------------------------------------------------------------------------------

    @property
    def is_numeric(self) -> bool:
        """Whether the column is numeric."""
        return self._series.dtype.is_numeric()

    @property
    def is_temporal(self) -> bool:
        """Whether the column is operator."""
        return self._series.dtype.is_temporal()

    @property
    def name(self) -> str:
        """The name of the column."""
        return self._series.name

    @property
    def row_count(self) -> int:
        """The number of rows in the column."""
        return self._series.len()

    @property
    def plot(self) -> ColumnPlotter:
        """The plotter for the column."""
        return ColumnPlotter(self)

    @property
    def type(self) -> DataType:
        """The type of the column."""
        return _PolarsDataType(self._series.dtype)

    # ------------------------------------------------------------------------------------------------------------------
    # Value operations
    # ------------------------------------------------------------------------------------------------------------------

    @overload
    def get_distinct_values(
        self,
        *,
        ignore_missing_values: Literal[True] = ...,
    ) -> Sequence[T_co]: ...

    @overload
    def get_distinct_values(
        self,
        *,
        ignore_missing_values: bool,
    ) -> Sequence[T_co | None]: ...

    def get_distinct_values(
        self,
        *,
        ignore_missing_values: bool = True,
    ) -> Sequence[T_co | None]:
        """
        Return the distinct values in the column.

        Parameters
        ----------
        ignore_missing_values:
            Whether to ignore missing values.

        Returns
        -------
        distinct_values:
            The distinct values in the column.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column = Column("test", [1, 2, 3, 2])
        >>> column.get_distinct_values()
        [1, 2, 3]
        """
        import polars as pl

        if self.row_count == 0:
            return []  # polars raises otherwise
        elif self._series.dtype == pl.Null:
            # polars raises otherwise
            if ignore_missing_values:
                return []
            else:
                return [None]

        if ignore_missing_values:
            series = self._series.drop_nulls()
        else:
            series = self._series

        return series.unique(maintain_order=True).to_list()

    def get_value(self, index: int) -> T_co:
        """
        Return the column value at specified index. Equivalent to the `[]` operator (indexed access).

        Nonnegative indices are counted from the beginning (starting at 0), negative indices from the end (starting at
        -1).

        Parameters
        ----------
        index:
            Index of requested value.

        Returns
        -------
        value:
            Value at index.

        Raises
        ------
        IndexError
            If the index is out of bounds.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column = Column("test", [1, 2, 3])
        >>> column.get_value(1)
        2

        >>> column[1]
        2
        """
        if index < -self.row_count or index >= self.row_count:
            raise IndexOutOfBoundsError(index)

        return self._series.__getitem__(index)

    # ------------------------------------------------------------------------------------------------------------------
    # Reductions
    # ------------------------------------------------------------------------------------------------------------------

    @overload
    def all(
        self,
        predicate: Callable[[Cell[T_co]], Cell[bool | None]],
        *,
        ignore_unknown: Literal[True] = ...,
    ) -> bool: ...

    @overload
    def all(
        self,
        predicate: Callable[[Cell[T_co]], Cell[bool | None]],
        *,
        ignore_unknown: bool,
    ) -> bool | None: ...

    def all(
        self,
        predicate: Callable[[Cell[T_co]], Cell[bool | None]],
        *,
        ignore_unknown: bool = True,
    ) -> bool | None:
        """
        Return whether all values in the column satisfy the predicate.

        The predicate can return one of three values:

        * True, if the value satisfies the predicate.
        * False, if the value does not satisfy the predicate.
        * None, if the truthiness of the predicate is unknown, e.g. due to missing values.

        By default, cases where the truthiness of the predicate is unknown are ignored and this method returns

        * True, if the predicate always returns True or None.
        * False, if the predicate returns False at least once.

        You can instead enable Kleene logic by setting `ignore_unknown=False`. In this case, this method returns

        * True, if the predicate always returns True.
        * False, if the predicate returns False at least once.
        * None, if the predicate never returns False, but at least once None.

        Parameters
        ----------
        predicate:
            The predicate to apply to each value.
        ignore_unknown:
            Whether to ignore cases where the truthiness of the predicate is unknown.

        Returns
        -------
        all_satisfy_predicate:
            Whether all values in the column satisfy the predicate.

        Raises
        ------
        TypeError
            If the predicate does not return a boolean cell.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column = Column("test", [1, 2, 3])
        >>> column.all(lambda cell: cell > 0)
        True

        >>> column.all(lambda cell: cell < 3)
        False
        """
        import polars as pl

        # Expressions only work on data frames/lazy frames, so we wrap the polars series first
        expression = predicate(_LazyCell(pl.col(self.name)))._polars_expression.all(ignore_nulls=ignore_unknown)
        return self._series.to_frame().select(expression).item()

    @overload
    def any(
        self,
        predicate: Callable[[Cell[T_co]], Cell[bool | None]],
        *,
        ignore_unknown: Literal[True] = ...,
    ) -> bool: ...

    @overload
    def any(
        self,
        predicate: Callable[[Cell[T_co]], Cell[bool | None]],
        *,
        ignore_unknown: bool,
    ) -> bool | None: ...

    def any(
        self,
        predicate: Callable[[Cell[T_co]], Cell[bool | None]],
        *,
        ignore_unknown: bool = True,
    ) -> bool | None:
        """
        Return whether any value in the column satisfies the predicate.

        The predicate can return one of three values:

        * True, if the value satisfies the predicate.
        * False, if the value does not satisfy the predicate.
        * None, if the truthiness of the predicate is unknown, e.g. due to missing values.

        By default, cases where the truthiness of the predicate is unknown are ignored and this method returns

        * True, if the predicate returns True at least once.
        * False, if the predicate always returns False or None.

        You can instead enable Kleene logic by setting `ignore_unknown=False`. In this case, this method returns

        * True, if the predicate returns True at least once.
        * False, if the predicate always returns False.
        * None, if the predicate never returns True, but at least once None.

        Parameters
        ----------
        predicate:
            The predicate to apply to each value.
        ignore_unknown:
            Whether to ignore cases where the truthiness of the predicate is unknown.

        Returns
        -------
        any_satisfy_predicate:
            Whether any value in the column satisfies the predicate.

        Raises
        ------
        TypeError
            If the predicate does not return a boolean cell.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column = Column("test", [1, 2, 3])
        >>> column.any(lambda cell: cell > 2)
        True

        >>> column.any(lambda cell: cell < 0)
        False
        """
        import polars as pl

        # Expressions only work on data frames/lazy frames, so we wrap the polars series first
        expression = predicate(_LazyCell(pl.col(self.name)))._polars_expression.any(ignore_nulls=ignore_unknown)
        return self._series.to_frame().select(expression).item()

    @overload
    def count_if(
        self,
        predicate: Callable[[Cell[T_co]], Cell[bool | None]],
        *,
        ignore_unknown: Literal[True] = ...,
    ) -> int: ...

    @overload
    def count_if(
        self,
        predicate: Callable[[Cell[T_co]], Cell[bool | None]],
        *,
        ignore_unknown: bool,
    ) -> int | None: ...

    def count_if(
        self,
        predicate: Callable[[Cell[T_co]], Cell[bool | None]],
        *,
        ignore_unknown: bool = True,
    ) -> int | None:
        """
        Return how many values in the column satisfy the predicate.

        The predicate can return one of three results:

        * True, if the value satisfies the predicate.
        * False, if the value does not satisfy the predicate.
        * None, if the truthiness of the predicate is unknown, e.g. due to missing values.

        By default, cases where the truthiness of the predicate is unknown are ignored and this method returns how
        often the predicate returns True.

        You can instead enable Kleene logic by setting `ignore_unknown=False`. In this case, this method returns None if
        the predicate returns None at least once. Otherwise, it still returns how often the predicate returns True.

        Parameters
        ----------
        predicate:
            The predicate to apply to each value.
        ignore_unknown:
            Whether to ignore cases where the truthiness of the predicate is unknown.

        Returns
        -------
        count:
            The number of values in the column that satisfy the predicate.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column = Column("test", [1, 2, 3])
        >>> column.count_if(lambda cell: cell > 1)
        2

        >>> column.count_if(lambda cell: cell < 0)
        0
        """
        import polars as pl

        # Expressions only work on data frames/lazy frames, so we wrap the polars series first
        expression = predicate(_LazyCell(pl.col(self.name)))._polars_expression
        series = self._series.to_frame().select(expression.alias(self.name)).get_column(self.name)

        if ignore_unknown or series.null_count() == 0:
            return series.sum()
        else:
            return None

    @overload
    def none(
        self,
        predicate: Callable[[Cell[T_co]], Cell[bool | None]],
        *,
        ignore_unknown: Literal[True] = ...,
    ) -> bool: ...

    @overload
    def none(
        self,
        predicate: Callable[[Cell[T_co]], Cell[bool | None]],
        *,
        ignore_unknown: bool,
    ) -> bool | None: ...

    def none(
        self,
        predicate: Callable[[Cell[T_co]], Cell[bool | None]],
        *,
        ignore_unknown: bool = True,
    ) -> bool | None:
        """
        Return whether no value in the column satisfies the predicate.

        The predicate can return one of three values:

        * True, if the value satisfies the predicate.
        * False, if the value does not satisfy the predicate.
        * None, if the truthiness of the predicate is unknown, e.g. due to missing values.

        By default, cases where the truthiness of the predicate is unknown are ignored and this method returns

        * True, if the predicate always returns False or None.
        * False, if the predicate returns True at least once.

        You can instead enable Kleene logic by setting `ignore_unknown=False`. In this case, this method returns

        * True, if the predicate always returns False.
        * False, if the predicate returns True at least once.
        * None, if the predicate never returns True, but at least once None.

        Parameters
        ----------
        predicate:
            The predicate to apply to each value.
        ignore_unknown:
            Whether to ignore cases where the truthiness of the predicate is unknown.

        Returns
        -------
        none_satisfy_predicate:
            Whether no value in the column satisfies the predicate.

        Raises
        ------
        TypeError
            If the predicate does not return a boolean cell.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column = Column("test", [1, 2, 3])
        >>> column.none(lambda cell: cell < 0)
        True

        >>> column.none(lambda cell: cell > 2)
        False
        """
        any_ = self.any(predicate, ignore_unknown=ignore_unknown)
        if any_ is None:
            return None

        return not any_

    # ------------------------------------------------------------------------------------------------------------------
    # Transformations
    # ------------------------------------------------------------------------------------------------------------------

    def rename(self, new_name: str) -> Column[T_co]:
        """
        Return a new column with a new name.

        **Note:** The original column is not modified.

        Parameters
        ----------
        new_name:
            The new name of the column.

        Returns
        -------
        renamed_column:
            A new column with the new name.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column = Column("test", [1, 2, 3])
        >>> column.rename("new_name")
        +----------+
        | new_name |
        |      --- |
        |      i64 |
        +==========+
        |        1 |
        |        2 |
        |        3 |
        +----------+
        """
        return self._from_polars_series(self._series.rename(new_name))

    def transform(
        self,
        transformer: Callable[[Cell[T_co]], Cell[R_co]],
    ) -> Column[R_co]:
        """
        Return a new column with values transformed by the transformer.

        **Note:** The original column is not modified.

        Parameters
        ----------
        transformer:
            The transformer to apply to each value.

        Returns
        -------
        transformed_column:
            A new column with transformed values.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column = Column("test", [1, 2, 3])
        >>> column.transform(lambda cell: 2 * cell)
        +------+
        | test |
        |  --- |
        |  i64 |
        +======+
        |    2 |
        |    4 |
        |    6 |
        +------+
        """
        import polars as pl

        # Expressions only work on data frames/lazy frames, so we wrap the polars series first
        expression = transformer(_LazyCell(pl.col(self.name)))._polars_expression
        series = self._series.to_frame().select(expression.alias(self.name)).get_column(self.name)

        return self._from_polars_series(series)

    # ------------------------------------------------------------------------------------------------------------------
    # Statistics
    # ------------------------------------------------------------------------------------------------------------------

    def summarize_statistics(self) -> Table:
        """
        Return a table with important statistics about the column.

        Returns
        -------
        statistics:
            The table with statistics.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column = Column("a", [1, 3])
        >>> column.summarize_statistics()
        +----------------------+---------+
        | metric               |       a |
        | ---                  |     --- |
        | str                  |     f64 |
        +================================+
        | min                  | 1.00000 |
        | max                  | 3.00000 |
        | mean                 | 2.00000 |
        | median               | 2.00000 |
        | standard deviation   | 1.41421 |
        | distinct value count | 2.00000 |
        | idness               | 1.00000 |
        | missing value ratio  | 0.00000 |
        | stability            | 0.50000 |
        +----------------------+---------+
        """
        from ._table import Table

        # TODO: turn this around (call table method, implement in table; allows parallelization)
        if self.is_numeric:
            values: list[Any] = [
                self.min(),
                self.max(),
                self.mean(),
                self.median(),
                self.standard_deviation(),
                self.distinct_value_count(),
                self.idness(),
                self.missing_value_ratio(),
                self.stability(),
            ]
        else:
            min_ = self.min()
            max_ = self.max()

            values = [
                str("-" if min_ is None else min_),
                str("-" if max_ is None else max_),
                "-",
                "-",
                "-",
                str(self.distinct_value_count()),
                str(self.idness()),
                str(self.missing_value_ratio()),
                str(self.stability()),
            ]

        return Table(
            {
                "metric": [
                    "min",
                    "max",
                    "mean",
                    "median",
                    "standard deviation",
                    "distinct value count",
                    "idness",
                    "missing value ratio",
                    "stability",
                ],
                self.name: values,
            },
        )

    def correlation_with(self, other: Column) -> float:
        """
        Calculate the Pearson correlation between this column and another column.

        The Pearson correlation is a value between -1 and 1 that indicates how much the two columns are linearly
        related:

        - A correlation of -1 indicates a perfect negative linear relationship.
        - A correlation of 0 indicates no linear relationship.
        - A correlation of 1 indicates a perfect positive linear relationship.

        Parameters
        ----------
        other:
            The other column to calculate the correlation with.

        Returns
        -------
        correlation:
            The Pearson correlation between the two columns.

        Raises
        ------
        TypeError
            If one of the columns is not numeric.
        ValueError
            If the columns have different lengths.
        ValueError
            If one of the columns has missing values.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column1 = Column("test", [1, 2, 3])
        >>> column2 = Column("test", [2, 4, 6])
        >>> column1.correlation_with(column2)
        1.0

        >>> column3 = Column("test", [3, 2, 1])
        >>> column1.correlation_with(column3)
        -1.0
        """
        import polars as pl

        _check_column_is_numeric(self, operation="calculate the correlation")
        _check_column_is_numeric(other, operation="calculate the correlation")

        if self.row_count != other.row_count:
            raise ColumnLengthMismatchError("")  # TODO: Add column names to error message
        if self.missing_value_count() > 0 or other.missing_value_count() > 0:
            raise MissingValuesColumnError("")  # TODO: Add column names to error message

        return pl.DataFrame({"a": self._series, "b": other._series}).corr().item(row=1, column="a")

    def distinct_value_count(
        self,
        *,
        ignore_missing_values: bool = True,
    ) -> int:
        """
        Return the number of distinct values in the column.

        Parameters
        ----------
        ignore_missing_values:
            Whether to ignore missing values when counting distinct values.

        Returns
        -------
        distinct_value_count:
            The number of distinct values in the column.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column = Column("test", [1, 2, 3, 2])
        >>> column.distinct_value_count()
        3
        """
        if ignore_missing_values:
            return self._series.drop_nulls().n_unique()
        else:
            return self._series.n_unique()

    def idness(self) -> float:
        """
        Calculate the idness of this column.

        We define the idness as the number of distinct values (including missing values) divided by the number of rows.
        If the column is empty, the idness is 1.0.

        A high idness indicates that the column most values in the column are unique. In this case, you must be careful
        when using the column for analysis, as a model may learn a mapping from this column to the target.

        Returns
        -------
        idness:
            The idness of the column.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column1 = Column("test", [1, 2, 3])
        >>> column1.idness()
        1.0

        >>> column2 = Column("test", [1, 2, 3, 2])
        >>> column2.idness()
        0.75
        """
        if self.row_count == 0:
            return 1.0  # All values are unique (since there are none)

        return self.distinct_value_count(ignore_missing_values=False) / self.row_count

    def max(self) -> T_co | None:
        """
        Return the maximum value in the column.

        Returns
        -------
        max:
            The maximum value in the column.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column = Column("test", [1, 2, 3])
        >>> column.max()
        3
        """
        from polars.exceptions import InvalidOperationError

        try:
            # Fails for Null columns
            return self._series.max()
        except InvalidOperationError:
            return None  # Return None to indicate that we don't know the maximum (consistent with mean and median)

    def mean(self) -> T_co:
        """
        Return the mean of the values in the column.

        The mean is the sum of the values divided by the number of values.

        Returns
        -------
        mean:
            The mean of the values in the column.

        Raises
        ------
        TypeError
            If the column is not numeric.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column = Column("test", [1, 2, 3])
        >>> column.mean()
        2.0
        """
        _check_column_is_numeric(self, operation="calculate the mean")

        return self._series.mean()

    def median(self) -> T_co:
        """
        Return the median of the values in the column.

        The median is the value in the middle of the sorted list of values. If the number of values is even, the median
        is the mean of the two middle values.

        Returns
        -------
        median:
            The median of the values in the column.

        Raises
        ------
        TypeError
            If the column is not numeric.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column = Column("test", [1, 2, 3])
        >>> column.median()
        2.0
        """
        _check_column_is_numeric(self, operation="calculate the median")

        return self._series.median()

    def min(self) -> T_co | None:
        """
        Return the minimum value in the column.

        Returns
        -------
        min:
            The minimum value in the column.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column = Column("test", [1, 2, 3])
        >>> column.min()
        1
        """
        from polars.exceptions import InvalidOperationError

        try:
            # Fails for Null columns
            return self._series.min()
        except InvalidOperationError:
            return None  # Return None to indicate that we don't know the maximum (consistent with mean and median)

    def missing_value_count(self) -> int:
        """
        Return the number of missing values in the column.

        Returns
        -------
        missing_value_count:
            The number of missing values in the column.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column = Column("test", [1, None, 3])
        >>> column.missing_value_count()
        1
        """
        return self._series.null_count()

    def missing_value_ratio(self) -> float:
        """
        Return the missing value ratio.

        We define the missing value ratio as the number of missing values in the column divided by the number of rows.
        If the column is empty, the missing value ratio is 1.0.

        A high missing value ratio indicates that the column is dominated by missing values. In this case, the column
        may not be useful for analysis.

        Returns
        -------
        missing_value_ratio:
            The ratio of missing values in the column.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column = Column("test", [1, None, 3, None])
        >>> column.missing_value_ratio()
        0.5
        """
        if self.row_count == 0:
            return 1.0  # All values are missing (since there are none)

        return self._series.null_count() / self.row_count

    @overload
    def mode(
        self,
        *,
        ignore_missing_values: Literal[True] = ...,
    ) -> Sequence[T_co]: ...

    @overload
    def mode(
        self,
        *,
        ignore_missing_values: bool,
    ) -> Sequence[T_co | None]: ...

    def mode(
        self,
        *,
        ignore_missing_values: bool = True,
    ) -> Sequence[T_co | None]:
        """
        Return the mode of the values in the column.

        The mode is the value that appears most frequently in the column. If multiple values occur equally often, all
        of them are returned. The values are sorted in ascending order.

        Parameters
        ----------
        ignore_missing_values:
            Whether to ignore missing values.

        Returns
        -------
        mode:
            The mode of the values in the column.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column = Column("test", [3, 1, 2, 1, 3])
        >>> column.mode()
        [1, 3]
        """
        import polars as pl

        if self.row_count == 0:
            return []  # polars raises otherwise
        elif self._series.dtype == pl.Null:
            # polars raises otherwise
            if ignore_missing_values:
                return []
            else:
                return [None]

        if ignore_missing_values:
            series = self._series.drop_nulls()
        else:
            series = self._series

        return series.mode().sort().to_list()

    def stability(self) -> float:
        """
        Return the stability of the column.

        We define the stability as the number of occurrences of the most common non-missing value divided by the total
        number of non-missing values. If the column is empty or all values are missing, the stability is 1.0.

        A high stability indicates that the column is dominated by a single value. In this case, the column may not be
        useful for analysis.

        Returns
        -------
        stability:
            The stability of the column.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column = Column("test", [1, 1, 2, 3, None])
        >>> column.stability()
        0.5
        """
        non_missing = self._series.drop_nulls()
        if non_missing.len() == 0:
            return 1.0  # All non-null values are the same (since there is are none)

        # `unique_counts` crashes in polars for boolean columns
        mode_count = non_missing.value_counts().get_column("count").max()

        return mode_count / non_missing.len()

    def standard_deviation(self) -> float:
        """
        Return the standard deviation of the values in the column.

        The standard deviation is the square root of the variance.

        Returns
        -------
        standard_deviation:
            The standard deviation of the values in the column. If no standard deviation can be calculated due to the
            type of the column, None is returned.

        Raises
        ------
        TypeError
            If the column is not numeric.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column = Column("test", [1, 2, 3])
        >>> column.standard_deviation()
        1.0
        """
        _check_column_is_numeric(self, operation="calculate the standard deviation")

        return self._series.std()

    def variance(self) -> float:
        """
        Return the variance of the values in the column.

        The variance is the average of the squared differences from the mean.

        Raises
        ------
        TypeError
            If the column is not numeric.

        Returns
        -------
        variance:
            The variance of the values in the column. If no variance can be calculated due to the type of the column,
            None is returned.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column = Column("test", [1, 2, 3])
        >>> column.variance()
        1.0
        """
        _check_column_is_numeric(self, operation="calculate the variance")

        return self._series.var()

    # ------------------------------------------------------------------------------------------------------------------
    # Export
    # ------------------------------------------------------------------------------------------------------------------

    def to_list(self) -> list[T_co]:
        """
        Return the values of the column in a list.

        Returns
        -------
        values:
            The values of the column in a list.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column = Column("test", [1, 2, 3])
        >>> column.to_list()
        [1, 2, 3]
        """
        return self._series.to_list()

    def to_table(self) -> Table:
        """
        Create a table that contains only this column.

        Returns
        -------
        table:
            The table with this column.

        Examples
        --------
        >>> from safeds.data.tabular.containers import Column
        >>> column = Column("test", [1, 2, 3])
        >>> column.to_table()
        +------+
        | test |
        |  --- |
        |  i64 |
        +======+
        |    1 |
        |    2 |
        |    3 |
        +------+
        """
        from ._table import Table

        return Table._from_polars_data_frame(self._series.to_frame())

    # ------------------------------------------------------------------------------------------------------------------
    # IPython integration
    # ------------------------------------------------------------------------------------------------------------------

    def _repr_html_(self) -> str:
        """
        Return a compact HTML representation of the column for IPython.

        Returns
        -------
        html:
            The generated HTML.
        """
        return self._series._repr_html_()

is_numeric: bool

Whether the column is numeric.

is_temporal: bool

Whether the column is operator.

name: str

The name of the column.

plot: ColumnPlotter

The plotter for the column.

row_count: int

The number of rows in the column.

type: DataType

The type of the column.

all

Return whether all values in the column satisfy the predicate.

The predicate can return one of three values:

  • True, if the value satisfies the predicate.
  • False, if the value does not satisfy the predicate.
  • None, if the truthiness of the predicate is unknown, e.g. due to missing values.

By default, cases where the truthiness of the predicate is unknown are ignored and this method returns

  • True, if the predicate always returns True or None.
  • False, if the predicate returns False at least once.

You can instead enable Kleene logic by setting ignore_unknown=False. In this case, this method returns

  • True, if the predicate always returns True.
  • False, if the predicate returns False at least once.
  • None, if the predicate never returns False, but at least once None.

Parameters:

Name Type Description Default
predicate Callable[[Cell[T_co]], Cell[bool | None]]

The predicate to apply to each value.

required
ignore_unknown bool

Whether to ignore cases where the truthiness of the predicate is unknown.

True

Returns:

Name Type Description
all_satisfy_predicate bool | None

Whether all values in the column satisfy the predicate.

Raises:

Type Description
TypeError

If the predicate does not return a boolean cell.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column = Column("test", [1, 2, 3])
>>> column.all(lambda cell: cell > 0)
True
>>> column.all(lambda cell: cell < 3)
False
Source code in src/safeds/data/tabular/containers/_column.py
def all(
    self,
    predicate: Callable[[Cell[T_co]], Cell[bool | None]],
    *,
    ignore_unknown: bool = True,
) -> bool | None:
    """
    Return whether all values in the column satisfy the predicate.

    The predicate can return one of three values:

    * True, if the value satisfies the predicate.
    * False, if the value does not satisfy the predicate.
    * None, if the truthiness of the predicate is unknown, e.g. due to missing values.

    By default, cases where the truthiness of the predicate is unknown are ignored and this method returns

    * True, if the predicate always returns True or None.
    * False, if the predicate returns False at least once.

    You can instead enable Kleene logic by setting `ignore_unknown=False`. In this case, this method returns

    * True, if the predicate always returns True.
    * False, if the predicate returns False at least once.
    * None, if the predicate never returns False, but at least once None.

    Parameters
    ----------
    predicate:
        The predicate to apply to each value.
    ignore_unknown:
        Whether to ignore cases where the truthiness of the predicate is unknown.

    Returns
    -------
    all_satisfy_predicate:
        Whether all values in the column satisfy the predicate.

    Raises
    ------
    TypeError
        If the predicate does not return a boolean cell.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column = Column("test", [1, 2, 3])
    >>> column.all(lambda cell: cell > 0)
    True

    >>> column.all(lambda cell: cell < 3)
    False
    """
    import polars as pl

    # Expressions only work on data frames/lazy frames, so we wrap the polars series first
    expression = predicate(_LazyCell(pl.col(self.name)))._polars_expression.all(ignore_nulls=ignore_unknown)
    return self._series.to_frame().select(expression).item()

any

Return whether any value in the column satisfies the predicate.

The predicate can return one of three values:

  • True, if the value satisfies the predicate.
  • False, if the value does not satisfy the predicate.
  • None, if the truthiness of the predicate is unknown, e.g. due to missing values.

By default, cases where the truthiness of the predicate is unknown are ignored and this method returns

  • True, if the predicate returns True at least once.
  • False, if the predicate always returns False or None.

You can instead enable Kleene logic by setting ignore_unknown=False. In this case, this method returns

  • True, if the predicate returns True at least once.
  • False, if the predicate always returns False.
  • None, if the predicate never returns True, but at least once None.

Parameters:

Name Type Description Default
predicate Callable[[Cell[T_co]], Cell[bool | None]]

The predicate to apply to each value.

required
ignore_unknown bool

Whether to ignore cases where the truthiness of the predicate is unknown.

True

Returns:

Name Type Description
any_satisfy_predicate bool | None

Whether any value in the column satisfies the predicate.

Raises:

Type Description
TypeError

If the predicate does not return a boolean cell.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column = Column("test", [1, 2, 3])
>>> column.any(lambda cell: cell > 2)
True
>>> column.any(lambda cell: cell < 0)
False
Source code in src/safeds/data/tabular/containers/_column.py
def any(
    self,
    predicate: Callable[[Cell[T_co]], Cell[bool | None]],
    *,
    ignore_unknown: bool = True,
) -> bool | None:
    """
    Return whether any value in the column satisfies the predicate.

    The predicate can return one of three values:

    * True, if the value satisfies the predicate.
    * False, if the value does not satisfy the predicate.
    * None, if the truthiness of the predicate is unknown, e.g. due to missing values.

    By default, cases where the truthiness of the predicate is unknown are ignored and this method returns

    * True, if the predicate returns True at least once.
    * False, if the predicate always returns False or None.

    You can instead enable Kleene logic by setting `ignore_unknown=False`. In this case, this method returns

    * True, if the predicate returns True at least once.
    * False, if the predicate always returns False.
    * None, if the predicate never returns True, but at least once None.

    Parameters
    ----------
    predicate:
        The predicate to apply to each value.
    ignore_unknown:
        Whether to ignore cases where the truthiness of the predicate is unknown.

    Returns
    -------
    any_satisfy_predicate:
        Whether any value in the column satisfies the predicate.

    Raises
    ------
    TypeError
        If the predicate does not return a boolean cell.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column = Column("test", [1, 2, 3])
    >>> column.any(lambda cell: cell > 2)
    True

    >>> column.any(lambda cell: cell < 0)
    False
    """
    import polars as pl

    # Expressions only work on data frames/lazy frames, so we wrap the polars series first
    expression = predicate(_LazyCell(pl.col(self.name)))._polars_expression.any(ignore_nulls=ignore_unknown)
    return self._series.to_frame().select(expression).item()

correlation_with

Calculate the Pearson correlation between this column and another column.

The Pearson correlation is a value between -1 and 1 that indicates how much the two columns are linearly related:

  • A correlation of -1 indicates a perfect negative linear relationship.
  • A correlation of 0 indicates no linear relationship.
  • A correlation of 1 indicates a perfect positive linear relationship.

Parameters:

Name Type Description Default
other Column

The other column to calculate the correlation with.

required

Returns:

Name Type Description
correlation float

The Pearson correlation between the two columns.

Raises:

Type Description
TypeError

If one of the columns is not numeric.

ValueError

If the columns have different lengths.

ValueError

If one of the columns has missing values.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column1 = Column("test", [1, 2, 3])
>>> column2 = Column("test", [2, 4, 6])
>>> column1.correlation_with(column2)
1.0
>>> column3 = Column("test", [3, 2, 1])
>>> column1.correlation_with(column3)
-1.0
Source code in src/safeds/data/tabular/containers/_column.py
def correlation_with(self, other: Column) -> float:
    """
    Calculate the Pearson correlation between this column and another column.

    The Pearson correlation is a value between -1 and 1 that indicates how much the two columns are linearly
    related:

    - A correlation of -1 indicates a perfect negative linear relationship.
    - A correlation of 0 indicates no linear relationship.
    - A correlation of 1 indicates a perfect positive linear relationship.

    Parameters
    ----------
    other:
        The other column to calculate the correlation with.

    Returns
    -------
    correlation:
        The Pearson correlation between the two columns.

    Raises
    ------
    TypeError
        If one of the columns is not numeric.
    ValueError
        If the columns have different lengths.
    ValueError
        If one of the columns has missing values.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column1 = Column("test", [1, 2, 3])
    >>> column2 = Column("test", [2, 4, 6])
    >>> column1.correlation_with(column2)
    1.0

    >>> column3 = Column("test", [3, 2, 1])
    >>> column1.correlation_with(column3)
    -1.0
    """
    import polars as pl

    _check_column_is_numeric(self, operation="calculate the correlation")
    _check_column_is_numeric(other, operation="calculate the correlation")

    if self.row_count != other.row_count:
        raise ColumnLengthMismatchError("")  # TODO: Add column names to error message
    if self.missing_value_count() > 0 or other.missing_value_count() > 0:
        raise MissingValuesColumnError("")  # TODO: Add column names to error message

    return pl.DataFrame({"a": self._series, "b": other._series}).corr().item(row=1, column="a")

count_if

Return how many values in the column satisfy the predicate.

The predicate can return one of three results:

  • True, if the value satisfies the predicate.
  • False, if the value does not satisfy the predicate.
  • None, if the truthiness of the predicate is unknown, e.g. due to missing values.

By default, cases where the truthiness of the predicate is unknown are ignored and this method returns how often the predicate returns True.

You can instead enable Kleene logic by setting ignore_unknown=False. In this case, this method returns None if the predicate returns None at least once. Otherwise, it still returns how often the predicate returns True.

Parameters:

Name Type Description Default
predicate Callable[[Cell[T_co]], Cell[bool | None]]

The predicate to apply to each value.

required
ignore_unknown bool

Whether to ignore cases where the truthiness of the predicate is unknown.

True

Returns:

Name Type Description
count int | None

The number of values in the column that satisfy the predicate.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column = Column("test", [1, 2, 3])
>>> column.count_if(lambda cell: cell > 1)
2
>>> column.count_if(lambda cell: cell < 0)
0
Source code in src/safeds/data/tabular/containers/_column.py
def count_if(
    self,
    predicate: Callable[[Cell[T_co]], Cell[bool | None]],
    *,
    ignore_unknown: bool = True,
) -> int | None:
    """
    Return how many values in the column satisfy the predicate.

    The predicate can return one of three results:

    * True, if the value satisfies the predicate.
    * False, if the value does not satisfy the predicate.
    * None, if the truthiness of the predicate is unknown, e.g. due to missing values.

    By default, cases where the truthiness of the predicate is unknown are ignored and this method returns how
    often the predicate returns True.

    You can instead enable Kleene logic by setting `ignore_unknown=False`. In this case, this method returns None if
    the predicate returns None at least once. Otherwise, it still returns how often the predicate returns True.

    Parameters
    ----------
    predicate:
        The predicate to apply to each value.
    ignore_unknown:
        Whether to ignore cases where the truthiness of the predicate is unknown.

    Returns
    -------
    count:
        The number of values in the column that satisfy the predicate.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column = Column("test", [1, 2, 3])
    >>> column.count_if(lambda cell: cell > 1)
    2

    >>> column.count_if(lambda cell: cell < 0)
    0
    """
    import polars as pl

    # Expressions only work on data frames/lazy frames, so we wrap the polars series first
    expression = predicate(_LazyCell(pl.col(self.name)))._polars_expression
    series = self._series.to_frame().select(expression.alias(self.name)).get_column(self.name)

    if ignore_unknown or series.null_count() == 0:
        return series.sum()
    else:
        return None

distinct_value_count

Return the number of distinct values in the column.

Parameters:

Name Type Description Default
ignore_missing_values bool

Whether to ignore missing values when counting distinct values.

True

Returns:

Name Type Description
distinct_value_count int

The number of distinct values in the column.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column = Column("test", [1, 2, 3, 2])
>>> column.distinct_value_count()
3
Source code in src/safeds/data/tabular/containers/_column.py
def distinct_value_count(
    self,
    *,
    ignore_missing_values: bool = True,
) -> int:
    """
    Return the number of distinct values in the column.

    Parameters
    ----------
    ignore_missing_values:
        Whether to ignore missing values when counting distinct values.

    Returns
    -------
    distinct_value_count:
        The number of distinct values in the column.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column = Column("test", [1, 2, 3, 2])
    >>> column.distinct_value_count()
    3
    """
    if ignore_missing_values:
        return self._series.drop_nulls().n_unique()
    else:
        return self._series.n_unique()

get_distinct_values

Return the distinct values in the column.

Parameters:

Name Type Description Default
ignore_missing_values bool

Whether to ignore missing values.

True

Returns:

Name Type Description
distinct_values Sequence[T_co | None]

The distinct values in the column.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column = Column("test", [1, 2, 3, 2])
>>> column.get_distinct_values()
[1, 2, 3]
Source code in src/safeds/data/tabular/containers/_column.py
def get_distinct_values(
    self,
    *,
    ignore_missing_values: bool = True,
) -> Sequence[T_co | None]:
    """
    Return the distinct values in the column.

    Parameters
    ----------
    ignore_missing_values:
        Whether to ignore missing values.

    Returns
    -------
    distinct_values:
        The distinct values in the column.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column = Column("test", [1, 2, 3, 2])
    >>> column.get_distinct_values()
    [1, 2, 3]
    """
    import polars as pl

    if self.row_count == 0:
        return []  # polars raises otherwise
    elif self._series.dtype == pl.Null:
        # polars raises otherwise
        if ignore_missing_values:
            return []
        else:
            return [None]

    if ignore_missing_values:
        series = self._series.drop_nulls()
    else:
        series = self._series

    return series.unique(maintain_order=True).to_list()

get_value

Return the column value at specified index. Equivalent to the [] operator (indexed access).

Nonnegative indices are counted from the beginning (starting at 0), negative indices from the end (starting at -1).

Parameters:

Name Type Description Default
index int

Index of requested value.

required

Returns:

Name Type Description
value T_co

Value at index.

Raises:

Type Description
IndexError

If the index is out of bounds.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column = Column("test", [1, 2, 3])
>>> column.get_value(1)
2
>>> column[1]
2
Source code in src/safeds/data/tabular/containers/_column.py
def get_value(self, index: int) -> T_co:
    """
    Return the column value at specified index. Equivalent to the `[]` operator (indexed access).

    Nonnegative indices are counted from the beginning (starting at 0), negative indices from the end (starting at
    -1).

    Parameters
    ----------
    index:
        Index of requested value.

    Returns
    -------
    value:
        Value at index.

    Raises
    ------
    IndexError
        If the index is out of bounds.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column = Column("test", [1, 2, 3])
    >>> column.get_value(1)
    2

    >>> column[1]
    2
    """
    if index < -self.row_count or index >= self.row_count:
        raise IndexOutOfBoundsError(index)

    return self._series.__getitem__(index)

idness

Calculate the idness of this column.

We define the idness as the number of distinct values (including missing values) divided by the number of rows. If the column is empty, the idness is 1.0.

A high idness indicates that the column most values in the column are unique. In this case, you must be careful when using the column for analysis, as a model may learn a mapping from this column to the target.

Returns:

Name Type Description
idness float

The idness of the column.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column1 = Column("test", [1, 2, 3])
>>> column1.idness()
1.0
>>> column2 = Column("test", [1, 2, 3, 2])
>>> column2.idness()
0.75
Source code in src/safeds/data/tabular/containers/_column.py
def idness(self) -> float:
    """
    Calculate the idness of this column.

    We define the idness as the number of distinct values (including missing values) divided by the number of rows.
    If the column is empty, the idness is 1.0.

    A high idness indicates that the column most values in the column are unique. In this case, you must be careful
    when using the column for analysis, as a model may learn a mapping from this column to the target.

    Returns
    -------
    idness:
        The idness of the column.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column1 = Column("test", [1, 2, 3])
    >>> column1.idness()
    1.0

    >>> column2 = Column("test", [1, 2, 3, 2])
    >>> column2.idness()
    0.75
    """
    if self.row_count == 0:
        return 1.0  # All values are unique (since there are none)

    return self.distinct_value_count(ignore_missing_values=False) / self.row_count

max

Return the maximum value in the column.

Returns:

Name Type Description
max T_co | None

The maximum value in the column.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column = Column("test", [1, 2, 3])
>>> column.max()
3
Source code in src/safeds/data/tabular/containers/_column.py
def max(self) -> T_co | None:
    """
    Return the maximum value in the column.

    Returns
    -------
    max:
        The maximum value in the column.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column = Column("test", [1, 2, 3])
    >>> column.max()
    3
    """
    from polars.exceptions import InvalidOperationError

    try:
        # Fails for Null columns
        return self._series.max()
    except InvalidOperationError:
        return None  # Return None to indicate that we don't know the maximum (consistent with mean and median)

mean

Return the mean of the values in the column.

The mean is the sum of the values divided by the number of values.

Returns:

Name Type Description
mean T_co

The mean of the values in the column.

Raises:

Type Description
TypeError

If the column is not numeric.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column = Column("test", [1, 2, 3])
>>> column.mean()
2.0
Source code in src/safeds/data/tabular/containers/_column.py
def mean(self) -> T_co:
    """
    Return the mean of the values in the column.

    The mean is the sum of the values divided by the number of values.

    Returns
    -------
    mean:
        The mean of the values in the column.

    Raises
    ------
    TypeError
        If the column is not numeric.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column = Column("test", [1, 2, 3])
    >>> column.mean()
    2.0
    """
    _check_column_is_numeric(self, operation="calculate the mean")

    return self._series.mean()

median

Return the median of the values in the column.

The median is the value in the middle of the sorted list of values. If the number of values is even, the median is the mean of the two middle values.

Returns:

Name Type Description
median T_co

The median of the values in the column.

Raises:

Type Description
TypeError

If the column is not numeric.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column = Column("test", [1, 2, 3])
>>> column.median()
2.0
Source code in src/safeds/data/tabular/containers/_column.py
def median(self) -> T_co:
    """
    Return the median of the values in the column.

    The median is the value in the middle of the sorted list of values. If the number of values is even, the median
    is the mean of the two middle values.

    Returns
    -------
    median:
        The median of the values in the column.

    Raises
    ------
    TypeError
        If the column is not numeric.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column = Column("test", [1, 2, 3])
    >>> column.median()
    2.0
    """
    _check_column_is_numeric(self, operation="calculate the median")

    return self._series.median()

min

Return the minimum value in the column.

Returns:

Name Type Description
min T_co | None

The minimum value in the column.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column = Column("test", [1, 2, 3])
>>> column.min()
1
Source code in src/safeds/data/tabular/containers/_column.py
def min(self) -> T_co | None:
    """
    Return the minimum value in the column.

    Returns
    -------
    min:
        The minimum value in the column.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column = Column("test", [1, 2, 3])
    >>> column.min()
    1
    """
    from polars.exceptions import InvalidOperationError

    try:
        # Fails for Null columns
        return self._series.min()
    except InvalidOperationError:
        return None  # Return None to indicate that we don't know the maximum (consistent with mean and median)

missing_value_count

Return the number of missing values in the column.

Returns:

Name Type Description
missing_value_count int

The number of missing values in the column.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column = Column("test", [1, None, 3])
>>> column.missing_value_count()
1
Source code in src/safeds/data/tabular/containers/_column.py
def missing_value_count(self) -> int:
    """
    Return the number of missing values in the column.

    Returns
    -------
    missing_value_count:
        The number of missing values in the column.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column = Column("test", [1, None, 3])
    >>> column.missing_value_count()
    1
    """
    return self._series.null_count()

missing_value_ratio

Return the missing value ratio.

We define the missing value ratio as the number of missing values in the column divided by the number of rows. If the column is empty, the missing value ratio is 1.0.

A high missing value ratio indicates that the column is dominated by missing values. In this case, the column may not be useful for analysis.

Returns:

Name Type Description
missing_value_ratio float

The ratio of missing values in the column.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column = Column("test", [1, None, 3, None])
>>> column.missing_value_ratio()
0.5
Source code in src/safeds/data/tabular/containers/_column.py
def missing_value_ratio(self) -> float:
    """
    Return the missing value ratio.

    We define the missing value ratio as the number of missing values in the column divided by the number of rows.
    If the column is empty, the missing value ratio is 1.0.

    A high missing value ratio indicates that the column is dominated by missing values. In this case, the column
    may not be useful for analysis.

    Returns
    -------
    missing_value_ratio:
        The ratio of missing values in the column.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column = Column("test", [1, None, 3, None])
    >>> column.missing_value_ratio()
    0.5
    """
    if self.row_count == 0:
        return 1.0  # All values are missing (since there are none)

    return self._series.null_count() / self.row_count

mode

Return the mode of the values in the column.

The mode is the value that appears most frequently in the column. If multiple values occur equally often, all of them are returned. The values are sorted in ascending order.

Parameters:

Name Type Description Default
ignore_missing_values bool

Whether to ignore missing values.

True

Returns:

Name Type Description
mode Sequence[T_co | None]

The mode of the values in the column.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column = Column("test", [3, 1, 2, 1, 3])
>>> column.mode()
[1, 3]
Source code in src/safeds/data/tabular/containers/_column.py
def mode(
    self,
    *,
    ignore_missing_values: bool = True,
) -> Sequence[T_co | None]:
    """
    Return the mode of the values in the column.

    The mode is the value that appears most frequently in the column. If multiple values occur equally often, all
    of them are returned. The values are sorted in ascending order.

    Parameters
    ----------
    ignore_missing_values:
        Whether to ignore missing values.

    Returns
    -------
    mode:
        The mode of the values in the column.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column = Column("test", [3, 1, 2, 1, 3])
    >>> column.mode()
    [1, 3]
    """
    import polars as pl

    if self.row_count == 0:
        return []  # polars raises otherwise
    elif self._series.dtype == pl.Null:
        # polars raises otherwise
        if ignore_missing_values:
            return []
        else:
            return [None]

    if ignore_missing_values:
        series = self._series.drop_nulls()
    else:
        series = self._series

    return series.mode().sort().to_list()

none

Return whether no value in the column satisfies the predicate.

The predicate can return one of three values:

  • True, if the value satisfies the predicate.
  • False, if the value does not satisfy the predicate.
  • None, if the truthiness of the predicate is unknown, e.g. due to missing values.

By default, cases where the truthiness of the predicate is unknown are ignored and this method returns

  • True, if the predicate always returns False or None.
  • False, if the predicate returns True at least once.

You can instead enable Kleene logic by setting ignore_unknown=False. In this case, this method returns

  • True, if the predicate always returns False.
  • False, if the predicate returns True at least once.
  • None, if the predicate never returns True, but at least once None.

Parameters:

Name Type Description Default
predicate Callable[[Cell[T_co]], Cell[bool | None]]

The predicate to apply to each value.

required
ignore_unknown bool

Whether to ignore cases where the truthiness of the predicate is unknown.

True

Returns:

Name Type Description
none_satisfy_predicate bool | None

Whether no value in the column satisfies the predicate.

Raises:

Type Description
TypeError

If the predicate does not return a boolean cell.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column = Column("test", [1, 2, 3])
>>> column.none(lambda cell: cell < 0)
True
>>> column.none(lambda cell: cell > 2)
False
Source code in src/safeds/data/tabular/containers/_column.py
def none(
    self,
    predicate: Callable[[Cell[T_co]], Cell[bool | None]],
    *,
    ignore_unknown: bool = True,
) -> bool | None:
    """
    Return whether no value in the column satisfies the predicate.

    The predicate can return one of three values:

    * True, if the value satisfies the predicate.
    * False, if the value does not satisfy the predicate.
    * None, if the truthiness of the predicate is unknown, e.g. due to missing values.

    By default, cases where the truthiness of the predicate is unknown are ignored and this method returns

    * True, if the predicate always returns False or None.
    * False, if the predicate returns True at least once.

    You can instead enable Kleene logic by setting `ignore_unknown=False`. In this case, this method returns

    * True, if the predicate always returns False.
    * False, if the predicate returns True at least once.
    * None, if the predicate never returns True, but at least once None.

    Parameters
    ----------
    predicate:
        The predicate to apply to each value.
    ignore_unknown:
        Whether to ignore cases where the truthiness of the predicate is unknown.

    Returns
    -------
    none_satisfy_predicate:
        Whether no value in the column satisfies the predicate.

    Raises
    ------
    TypeError
        If the predicate does not return a boolean cell.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column = Column("test", [1, 2, 3])
    >>> column.none(lambda cell: cell < 0)
    True

    >>> column.none(lambda cell: cell > 2)
    False
    """
    any_ = self.any(predicate, ignore_unknown=ignore_unknown)
    if any_ is None:
        return None

    return not any_

rename

Return a new column with a new name.

Note: The original column is not modified.

Parameters:

Name Type Description Default
new_name str

The new name of the column.

required

Returns:

Name Type Description
renamed_column Column[T_co]

A new column with the new name.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column = Column("test", [1, 2, 3])
>>> column.rename("new_name")
+----------+
| new_name |
|      --- |
|      i64 |
+==========+
|        1 |
|        2 |
|        3 |
+----------+
Source code in src/safeds/data/tabular/containers/_column.py
def rename(self, new_name: str) -> Column[T_co]:
    """
    Return a new column with a new name.

    **Note:** The original column is not modified.

    Parameters
    ----------
    new_name:
        The new name of the column.

    Returns
    -------
    renamed_column:
        A new column with the new name.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column = Column("test", [1, 2, 3])
    >>> column.rename("new_name")
    +----------+
    | new_name |
    |      --- |
    |      i64 |
    +==========+
    |        1 |
    |        2 |
    |        3 |
    +----------+
    """
    return self._from_polars_series(self._series.rename(new_name))

stability

Return the stability of the column.

We define the stability as the number of occurrences of the most common non-missing value divided by the total number of non-missing values. If the column is empty or all values are missing, the stability is 1.0.

A high stability indicates that the column is dominated by a single value. In this case, the column may not be useful for analysis.

Returns:

Name Type Description
stability float

The stability of the column.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column = Column("test", [1, 1, 2, 3, None])
>>> column.stability()
0.5
Source code in src/safeds/data/tabular/containers/_column.py
def stability(self) -> float:
    """
    Return the stability of the column.

    We define the stability as the number of occurrences of the most common non-missing value divided by the total
    number of non-missing values. If the column is empty or all values are missing, the stability is 1.0.

    A high stability indicates that the column is dominated by a single value. In this case, the column may not be
    useful for analysis.

    Returns
    -------
    stability:
        The stability of the column.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column = Column("test", [1, 1, 2, 3, None])
    >>> column.stability()
    0.5
    """
    non_missing = self._series.drop_nulls()
    if non_missing.len() == 0:
        return 1.0  # All non-null values are the same (since there is are none)

    # `unique_counts` crashes in polars for boolean columns
    mode_count = non_missing.value_counts().get_column("count").max()

    return mode_count / non_missing.len()

standard_deviation

Return the standard deviation of the values in the column.

The standard deviation is the square root of the variance.

Returns:

Name Type Description
standard_deviation float

The standard deviation of the values in the column. If no standard deviation can be calculated due to the type of the column, None is returned.

Raises:

Type Description
TypeError

If the column is not numeric.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column = Column("test", [1, 2, 3])
>>> column.standard_deviation()
1.0
Source code in src/safeds/data/tabular/containers/_column.py
def standard_deviation(self) -> float:
    """
    Return the standard deviation of the values in the column.

    The standard deviation is the square root of the variance.

    Returns
    -------
    standard_deviation:
        The standard deviation of the values in the column. If no standard deviation can be calculated due to the
        type of the column, None is returned.

    Raises
    ------
    TypeError
        If the column is not numeric.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column = Column("test", [1, 2, 3])
    >>> column.standard_deviation()
    1.0
    """
    _check_column_is_numeric(self, operation="calculate the standard deviation")

    return self._series.std()

summarize_statistics

Return a table with important statistics about the column.

Returns:

Name Type Description
statistics Table

The table with statistics.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column = Column("a", [1, 3])
>>> column.summarize_statistics()
+----------------------+---------+
| metric               |       a |
| ---                  |     --- |
| str                  |     f64 |
+================================+
| min                  | 1.00000 |
| max                  | 3.00000 |
| mean                 | 2.00000 |
| median               | 2.00000 |
| standard deviation   | 1.41421 |
| distinct value count | 2.00000 |
| idness               | 1.00000 |
| missing value ratio  | 0.00000 |
| stability            | 0.50000 |
+----------------------+---------+
Source code in src/safeds/data/tabular/containers/_column.py
def summarize_statistics(self) -> Table:
    """
    Return a table with important statistics about the column.

    Returns
    -------
    statistics:
        The table with statistics.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column = Column("a", [1, 3])
    >>> column.summarize_statistics()
    +----------------------+---------+
    | metric               |       a |
    | ---                  |     --- |
    | str                  |     f64 |
    +================================+
    | min                  | 1.00000 |
    | max                  | 3.00000 |
    | mean                 | 2.00000 |
    | median               | 2.00000 |
    | standard deviation   | 1.41421 |
    | distinct value count | 2.00000 |
    | idness               | 1.00000 |
    | missing value ratio  | 0.00000 |
    | stability            | 0.50000 |
    +----------------------+---------+
    """
    from ._table import Table

    # TODO: turn this around (call table method, implement in table; allows parallelization)
    if self.is_numeric:
        values: list[Any] = [
            self.min(),
            self.max(),
            self.mean(),
            self.median(),
            self.standard_deviation(),
            self.distinct_value_count(),
            self.idness(),
            self.missing_value_ratio(),
            self.stability(),
        ]
    else:
        min_ = self.min()
        max_ = self.max()

        values = [
            str("-" if min_ is None else min_),
            str("-" if max_ is None else max_),
            "-",
            "-",
            "-",
            str(self.distinct_value_count()),
            str(self.idness()),
            str(self.missing_value_ratio()),
            str(self.stability()),
        ]

    return Table(
        {
            "metric": [
                "min",
                "max",
                "mean",
                "median",
                "standard deviation",
                "distinct value count",
                "idness",
                "missing value ratio",
                "stability",
            ],
            self.name: values,
        },
    )

to_list

Return the values of the column in a list.

Returns:

Name Type Description
values list[T_co]

The values of the column in a list.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column = Column("test", [1, 2, 3])
>>> column.to_list()
[1, 2, 3]
Source code in src/safeds/data/tabular/containers/_column.py
def to_list(self) -> list[T_co]:
    """
    Return the values of the column in a list.

    Returns
    -------
    values:
        The values of the column in a list.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column = Column("test", [1, 2, 3])
    >>> column.to_list()
    [1, 2, 3]
    """
    return self._series.to_list()

to_table

Create a table that contains only this column.

Returns:

Name Type Description
table Table

The table with this column.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column = Column("test", [1, 2, 3])
>>> column.to_table()
+------+
| test |
|  --- |
|  i64 |
+======+
|    1 |
|    2 |
|    3 |
+------+
Source code in src/safeds/data/tabular/containers/_column.py
def to_table(self) -> Table:
    """
    Create a table that contains only this column.

    Returns
    -------
    table:
        The table with this column.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column = Column("test", [1, 2, 3])
    >>> column.to_table()
    +------+
    | test |
    |  --- |
    |  i64 |
    +======+
    |    1 |
    |    2 |
    |    3 |
    +------+
    """
    from ._table import Table

    return Table._from_polars_data_frame(self._series.to_frame())

transform

Return a new column with values transformed by the transformer.

Note: The original column is not modified.

Parameters:

Name Type Description Default
transformer Callable[[Cell[T_co]], Cell[R_co]]

The transformer to apply to each value.

required

Returns:

Name Type Description
transformed_column Column[R_co]

A new column with transformed values.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column = Column("test", [1, 2, 3])
>>> column.transform(lambda cell: 2 * cell)
+------+
| test |
|  --- |
|  i64 |
+======+
|    2 |
|    4 |
|    6 |
+------+
Source code in src/safeds/data/tabular/containers/_column.py
def transform(
    self,
    transformer: Callable[[Cell[T_co]], Cell[R_co]],
) -> Column[R_co]:
    """
    Return a new column with values transformed by the transformer.

    **Note:** The original column is not modified.

    Parameters
    ----------
    transformer:
        The transformer to apply to each value.

    Returns
    -------
    transformed_column:
        A new column with transformed values.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column = Column("test", [1, 2, 3])
    >>> column.transform(lambda cell: 2 * cell)
    +------+
    | test |
    |  --- |
    |  i64 |
    +======+
    |    2 |
    |    4 |
    |    6 |
    +------+
    """
    import polars as pl

    # Expressions only work on data frames/lazy frames, so we wrap the polars series first
    expression = transformer(_LazyCell(pl.col(self.name)))._polars_expression
    series = self._series.to_frame().select(expression.alias(self.name)).get_column(self.name)

    return self._from_polars_series(series)

variance

Return the variance of the values in the column.

The variance is the average of the squared differences from the mean.

Raises:

Type Description
TypeError

If the column is not numeric.

Returns:

Name Type Description
variance float

The variance of the values in the column. If no variance can be calculated due to the type of the column, None is returned.

Examples:

>>> from safeds.data.tabular.containers import Column
>>> column = Column("test", [1, 2, 3])
>>> column.variance()
1.0
Source code in src/safeds/data/tabular/containers/_column.py
def variance(self) -> float:
    """
    Return the variance of the values in the column.

    The variance is the average of the squared differences from the mean.

    Raises
    ------
    TypeError
        If the column is not numeric.

    Returns
    -------
    variance:
        The variance of the values in the column. If no variance can be calculated due to the type of the column,
        None is returned.

    Examples
    --------
    >>> from safeds.data.tabular.containers import Column
    >>> column = Column("test", [1, 2, 3])
    >>> column.variance()
    1.0
    """
    _check_column_is_numeric(self, operation="calculate the variance")

    return self._series.var()