Discretizer
Bases: TableTransformer
The Discretizer bins continuous data into intervals.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bin_count
|
int
|
The number of bins to be created. |
5
|
selector
|
str | list[str] | None
|
The list of columns used to fit the transformer. If |
None
|
Raises:
Type | Description |
---|---|
OutOfBoundsError
|
If the given |
Methods:
Name | Description |
---|---|
fit |
Learn a transformation for a set of columns in a table. |
fit_and_transform |
Learn a transformation for a set of columns in a table and apply the learned transformation to the same table. |
transform |
Apply the learned transformation to a table. |
Attributes:
Name | Type | Description |
---|---|---|
bin_count |
int
|
The number of bins to be created. |
is_fitted |
bool
|
Whether the transformer is fitted. |
Source code in src/safeds/data/tabular/transformation/_discretizer.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
|
bin_count
¶
The number of bins to be created.
is_fitted
¶
Whether the transformer is fitted.
fit
¶
Learn a transformation for a set of columns in a table.
This transformer is not modified.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
table
|
Table
|
The table used to fit the transformer. |
required |
Returns:
Name | Type | Description |
---|---|---|
fitted_transformer |
Discretizer
|
The fitted transformer. |
Raises:
Type | Description |
---|---|
ValueError
|
If the table is empty. |
NonNumericColumnError
|
If one of the columns, that should be fitted is non-numeric. |
ColumnNotFoundError
|
If one of the columns, that should be fitted is not in the table. |
Source code in src/safeds/data/tabular/transformation/_discretizer.py
fit_and_transform
¶
Learn a transformation for a set of columns in a table and apply the learned transformation to the same table.
Note: Neither this transformer nor the given table are modified.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
table
|
Table
|
The table used to fit the transformer. The transformer is then applied to this table. |
required |
Returns:
Name | Type | Description |
---|---|---|
fitted_transformer |
Self
|
The fitted transformer. |
transformed_table |
Table
|
The transformed table. |
Source code in src/safeds/data/tabular/transformation/_table_transformer.py
transform
¶
Apply the learned transformation to a table.
The table is not modified.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
table
|
Table
|
The table to which the learned transformation is applied. |
required |
Returns:
Name | Type | Description |
---|---|---|
transformed_table |
Table
|
The transformed table. |
Raises:
Type | Description |
---|---|
NotFittedError
|
If the transformer has not been fitted yet. |
ValueError
|
If the table is empty. |
ColumnNotFoundError
|
If one of the columns, that should be transformed is not in the table. |
NonNumericColumnError
|
If one of the columns, that should be fitted is non-numeric. |