ClassificationMetrics
Bases: ABC
A collection of classification metrics.
Source code in src/safeds/ml/metrics/_classification_metrics.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
|
accuracy
¶
Compute the accuracy on the given data.
The accuracy is the proportion of predicted target values that were correct. The higher the accuracy, the better. Results range from 0.0 to 1.0.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predicted |
Column | TabularDataset | TimeSeriesDataset
|
The predicted target values produced by the classifier. |
required |
expected |
Column | TabularDataset | TimeSeriesDataset
|
The expected target values. |
required |
Returns:
Name | Type | Description |
---|---|---|
accuracy |
float
|
The calculated accuracy. |
Source code in src/safeds/ml/metrics/_classification_metrics.py
f1_score
¶
Compute the F₁ score on the given data.
The F₁ score is the harmonic mean of precision and recall. The higher the F₁ score, the better the classifier. Results range from 0.0 to 1.0.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predicted |
Column | TabularDataset | TimeSeriesDataset
|
The predicted target values produced by the classifier. |
required |
expected |
Column | TabularDataset | TimeSeriesDataset
|
The expected target values. |
required |
positive_class |
Any
|
The class to be considered positive. All other classes are considered negative. |
required |
Returns:
Name | Type | Description |
---|---|---|
f1_score |
float
|
The calculated F₁ score. |
Source code in src/safeds/ml/metrics/_classification_metrics.py
precision
¶
Compute the precision on the given data.
The precision is the proportion of positive predictions that were correct. The higher the precision, the better the classifier. Results range from 0.0 to 1.0.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predicted |
Column | TabularDataset | TimeSeriesDataset
|
The predicted target values produced by the classifier. |
required |
expected |
Column | TabularDataset | TimeSeriesDataset
|
The expected target values. |
required |
positive_class |
Any
|
The class to be considered positive. All other classes are considered negative. |
required |
Returns:
Name | Type | Description |
---|---|---|
precision |
float
|
The calculated precision. |
Source code in src/safeds/ml/metrics/_classification_metrics.py
recall
¶
Compute the recall on the given data.
The recall is the proportion of actual positives that were predicted correctly. The higher the recall, the better the classifier. Results range from 0.0 to 1.0.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predicted |
Column | TabularDataset | TimeSeriesDataset
|
The predicted target values produced by the classifier. |
required |
expected |
Column | TabularDataset | TimeSeriesDataset
|
The expected target values. |
required |
positive_class |
Any
|
The class to be considered positive. All other classes are considered negative. |
required |
Returns:
Name | Type | Description |
---|---|---|
recall |
float
|
The calculated recall. |
Source code in src/safeds/ml/metrics/_classification_metrics.py
summarize
¶
Summarize classification metrics on the given data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predicted |
Column | TabularDataset | TimeSeriesDataset
|
The predicted target values produced by the classifier. |
required |
expected |
Column | TabularDataset | TimeSeriesDataset
|
The expected target values. |
required |
positive_class |
Any
|
The class to be considered positive. All other classes are considered negative. |
required |
Returns:
Name | Type | Description |
---|---|---|
metrics |
Table
|
A table containing the classification metrics. |