ElasticNetRegression
Bases: Regressor
Elastic net regression.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha |
float
|
Controls the regularization of the model. The higher the value, the more regularized it becomes. |
1.0
|
lasso_ratio |
float
|
Number between 0 and 1 that controls the ratio between Lasso and Ridge regularization. If 0, only Ridge regularization is used. If 1, only Lasso regularization is used. |
0.5
|
Raises:
Type | Description |
---|---|
OutOfBoundsError
|
If |
Source code in src/safeds/ml/classical/regression/_elastic_net_regression.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
|
alpha: float
property
¶
Get the regularization of the model.
Returns:
Name | Type | Description |
---|---|---|
result |
float
|
The regularization of the model. |
lasso_ratio: float
property
¶
Get the ratio between Lasso and Ridge regularization.
Returns:
Name | Type | Description |
---|---|---|
result |
float
|
The ratio between Lasso and Ridge regularization. |
__init__(*, alpha=1.0, lasso_ratio=0.5)
¶
Source code in src/safeds/ml/classical/regression/_elastic_net_regression.py
fit(training_set)
¶
Create a copy of this regressor and fit it with the given training data.
This regressor is not modified.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
training_set |
TaggedTable
|
The training data containing the feature and target vectors. |
required |
Returns:
Name | Type | Description |
---|---|---|
fitted_regressor |
ElasticNetRegression
|
The fitted regressor. |
Raises:
Type | Description |
---|---|
LearningError
|
If the training data contains invalid values or if the training failed. |
UntaggedTableError
|
If the table is untagged. |
NonNumericColumnError
|
If the training data contains non-numerical values. |
MissingValuesColumnError
|
If the training data contains missing values. |
DatasetMissesDataError
|
If the training data contains no rows. |
Source code in src/safeds/ml/classical/regression/_elastic_net_regression.py
is_fitted()
¶
Check if the regressor is fitted.
Returns:
Name | Type | Description |
---|---|---|
is_fitted |
bool
|
Whether the regressor is fitted. |
predict(dataset)
¶
Predict a target vector using a dataset containing feature vectors. The model has to be trained first.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
Table
|
The dataset containing the feature vectors. |
required |
Returns:
Name | Type | Description |
---|---|---|
table |
TaggedTable
|
A dataset containing the given feature vectors and the predicted target vector. |
Raises:
Type | Description |
---|---|
ModelNotFittedError
|
If the model has not been fitted yet. |
DatasetContainsTargetError
|
If the dataset contains the target column already. |
DatasetMissesFeaturesError
|
If the dataset misses feature columns. |
PredictionError
|
If predicting with the given dataset failed. |
NonNumericColumnError
|
If the dataset contains non-numerical values. |
MissingValuesColumnError
|
If the dataset contains missing values. |
DatasetMissesDataError
|
If the dataset contains no rows. |