KNearestNeighbors
Bases: Classifier
K-nearest-neighbors classification.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
number_of_neighbors |
int
|
The number of neighbors to use for interpolation. Has to be greater than 0 (validated in the constructor) and
less than or equal to the sample size (validated when calling |
required |
Raises:
Type | Description |
---|---|
OutOfBoundsError
|
If |
Source code in src/safeds/ml/classical/classification/_k_nearest_neighbors.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
|
number_of_neighbors: int
property
¶
Get the number of neighbors used for interpolation.
Returns:
Name | Type | Description |
---|---|---|
result |
int
|
The number of neighbors. |
__init__(number_of_neighbors)
¶
Source code in src/safeds/ml/classical/classification/_k_nearest_neighbors.py
fit(training_set)
¶
Create a copy of this classifier and fit it with the given training data.
This classifier is not modified.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
training_set |
TaggedTable
|
The training data containing the feature and target vectors. |
required |
Returns:
Name | Type | Description |
---|---|---|
fitted_classifier |
KNearestNeighbors
|
The fitted classifier. |
Raises:
Type | Description |
---|---|
ValueError
|
If |
LearningError
|
If the training data contains invalid values or if the training failed. |
UntaggedTableError
|
If the table is untagged. |
NonNumericColumnError
|
If the training data contains non-numerical values. |
MissingValuesColumnError
|
If the training data contains missing values. |
DatasetMissesDataError
|
If the training data contains no rows. |
Source code in src/safeds/ml/classical/classification/_k_nearest_neighbors.py
is_fitted()
¶
Check if the classifier is fitted.
Returns:
Name | Type | Description |
---|---|---|
is_fitted |
bool
|
Whether the classifier is fitted. |
predict(dataset)
¶
Predict a target vector using a dataset containing feature vectors. The model has to be trained first.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset |
Table
|
The dataset containing the feature vectors. |
required |
Returns:
Name | Type | Description |
---|---|---|
table |
TaggedTable
|
A dataset containing the given feature vectors and the predicted target vector. |
Raises:
Type | Description |
---|---|
ModelNotFittedError
|
If the model has not been fitted yet. |
DatasetContainsTargetError
|
If the dataset contains the target column already. |
DatasetMissesFeaturesError
|
If the dataset misses feature columns. |
PredictionError
|
If predicting with the given dataset failed. |
NonNumericColumnError
|
If the dataset contains non-numerical values. |
MissingValuesColumnError
|
If the dataset contains missing values. |
DatasetMissesDataError
|
If the dataset contains no rows. |